
Growing Plants for Supplemental Food Production on a Mars Fly-By Mission

Raymond M. Wheeler Surface Systems Office Kennedy Space Center, FL

UND Space Studies Colloquium Series April 14, 2014

Human Life Support Requirements:

Inputs

	Daily Rqmt.	(% total mass)			
Oxygen	0.83 kg	2.7%			
Food	0.62 kg	2.0%			
Water (drink and food pre	11.4%				
Water 26.0 kg 83.9% (hygiene, flush laundry, dishes)					

TOTAL 31.0 kg

Outputs

	Daily	(% total mass)		
Carbon dioxide	1.00 kg	3.2%		
Metabolic solids	0.11 kg	0.35%		
Water (metabolic / (hygiene / fl (laundry / di (latent	ush	96.5% 12.3%) 24.7%) 55.7%) 3.6%)		
TOTAL 31.0 kg				

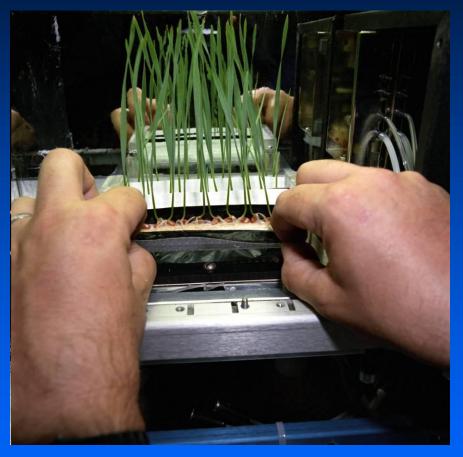
Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document Food assumed to be dry except for chemically-bound water.

Why Plants for a Mars Mission?

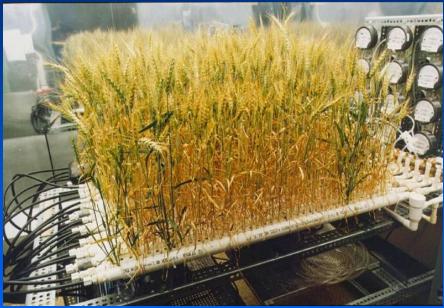
- Currently, food consumed by astronauts is all preserved or thermo-stabilized, package food
- Plants could supply of fresh foods to supplement the packaged food diet
 - Improve nutrition for the crew through bio-available nutrients and antioxidants as radiation countermeasure
 - Improve the acceptability of the meals
 - Add textures, flavors, and colors of fresh vegetables
 - Improve crew morale through the presence of plants
 - Depending on size of the plant growth system, help supply O₂ production and remove CO₂

Fresh Foods for Long Space Missions

Antioxidants and Supplemental Nutrients


Anthocyanin induced by blue and UV light in red-leaf lettuce; Others might include lycopene, lutein, Vit. K, Ca and phenolics. Crew Morale: Plants could provide comfort to crew (Photo from US South Pole Plant Chamber)

C


Challenges for Growing Plants for a Mars Mission?

- Microgravity
 - Watering, thermal mixing, plant physiological responses
- Lighting
 - Power for electric lighting; interference with crew ops
- Atmospheric Closure
 - Trace contaminants, e.g., ethylene
 - Super-elevated CO_2 (e.g., > 5000 ppm)
- Radiation Exposure
- Food Safety Issues

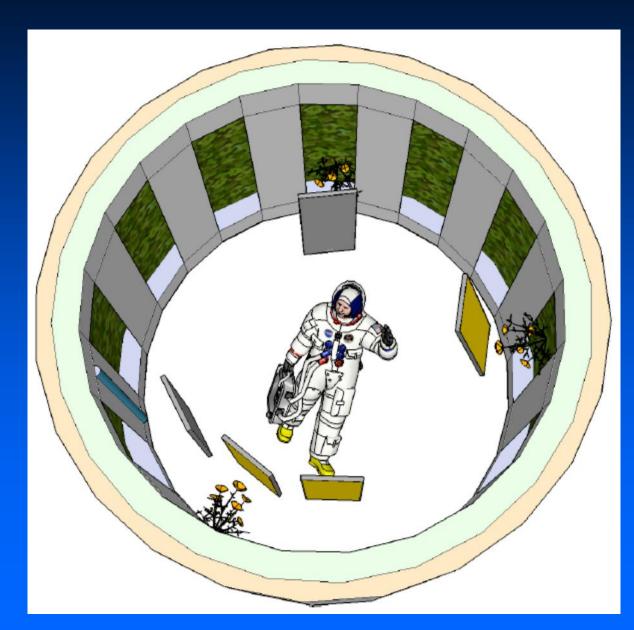
Watering Systems for Weightlessness

Porous ceramic or steel tubes to contain the water which then moves by capillary forces to the roots

Wright et al. 1988. Trans. ASAE 31:440-446; Dreschel and Sager. 1989. HortScience 24:944-947.

Biomass Production System (BPS)

Porous steel tubes surrounded by arcillite rooting media with time-release fertilizer



Rotating Plant Growth System for Artificial Gravity ?

Perhaps even and a larger rotating system within a space module?

Concept drawing By Morgan Simpson NASA Kennedy Space Center

The Importance of Lighting --Electric Lamp Options

	Lamp Type	Conversion* Efficiency	Lamp Life* (hrs)	Spectrum
•	Incandescent/Tungsten**	5-10%	2000	Intermd.
•	Xenon	5-10%	2000	Broad
•	Fluorescent***	20%	5,000-20,000	Broad
•	Metal Halide	25%	20,000	Broad
•	High Pressure Sodium	30%	25,000	Intermd.
•	Low Pressure Sodium	35%	25,000	Narrow
•	Microwave Sulfur	35-40%+	?	Broad
•	LEDs (red and blue)****	>40%	100,000 ?	Narrow

- * Approximate values.
- ** Tungsten halogen lamps have broader spectrum.

*** For VHO lamps; lower power lamps with electronic ballasts last up to ~20,000 hrs.

**** State-of-Art Blue and Red LEDs most efficient.

LED for Plants in Spaceflight Chambers

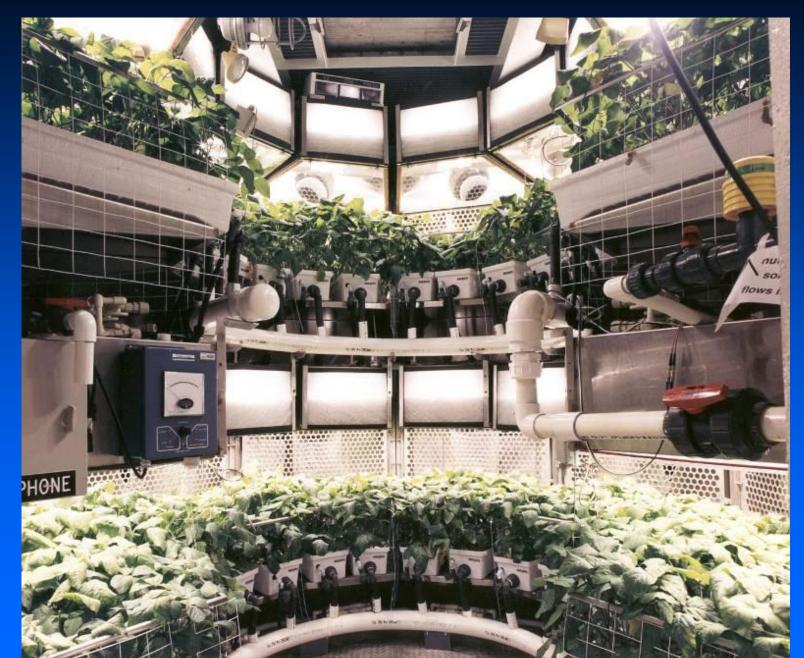
Red...photosynthesis Blue...photomorphogenesis Green...human vision

John Sager, KSC, Testing Prototype Flight Plant Chambers with LEDs

Russian Phytoconveyor (IMBP)—Proposed for Vegetable Production for the ISS and Mars Transit

Chief Engineer: Yuliy Berkovich, IMBP, Moscow

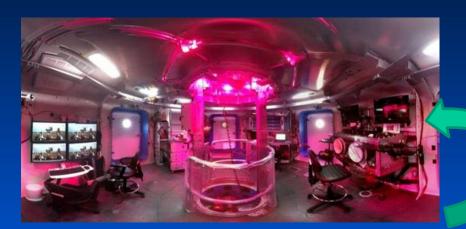
Can Direct Solar Lighting Be Used for Mars Missions?


2 m² of collectors on solar tracking drive -roof of Space Life Sciences Lab, KSC Up to 400 W of solar light delivered to a plant chamber (40-50% of incident light)

Cuello et al. 1998. Life Sup Biosphere Sci. Drysdale et al., 2008 . Adv. Space Res.

How would plant growth systems fit within human habitats or spacecraft ?

NASA's Biomass Production Chamber (BPC)


Smaller Scale Lab Testing

Habitat Demonstration Unit, Near Flagstaff Arizona

Testing of Plants in NASA's Habitat Demonstration Unit

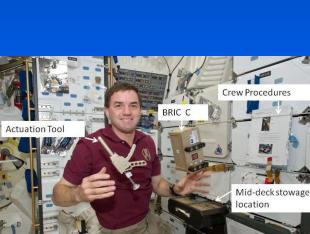
Plant Atrium In HDU 2011 with Red/Blue LED lighting

Plant Atrium In HDU 2012 With White LED lighting

Plant Growth Testing in Space (mostly with seedlings or small plants)

- Early Russian and US Testing (60s through 80s)
 Wheat, peppers, duckweed, carrot
- NASA Sky Lab
 - Rice
- Shuttle
 - Sunflower, potato, brassica, mung bean, oat, soybean, others
- Russian Mir Space Station
 Wheat, mizuna, Chinese cabbage, brassica, others
- International Space Station
 - Wheat, mizuna, pea, barley, soybean, others

Plant Chambers for Space Shuttle and ISS


Life Science Space Flight Experiments

Potato Tubers in Space (STS 73)

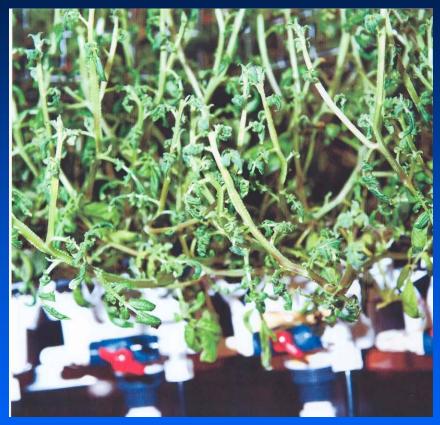
Astroculture-05

Photosynthesis in µ-gravity (STS 110 / 8A)

Croxdale et al. 1997. J. Exp Bot. Monje et al. 2005. Planta

23

Russian "Lada" Plant Chamber on ISS


Mizuna Plants (Japanese Mustard)

Plants in Tightly Closed Atmospheres: Ethylene Effects

Epinastic (rolled) Wheat Leaves Ethylene at ~120 ppb Epinastic Potato Leaves Ethylene at ~40 ppb

Food Safety Considerations

Plants have to meet microbiological safety (e.g., coliform bacteria)
Levels of biocides from water might be a concern (e.g., iodine and silver)

> Top, Cosmonaut harvesting Mizuna on the ISS

Bottom, sanitizing lettuce leaves In NASA HDU study in 2010

Constraints for Crop Production for Mars Flyby or any Space Mission:

- Energy Requirements
- System Mass
- System Volume
- Crew Time
- System Reliability

These apply for all life support technologies, including the use of plants

Plants for Future Space Missions

Intnl. Space Station (plant experiments—possible salad crops)

Lunar Lander (probably no plants)

Lunar Outpost (supplemental foods)

Martian Outpost

(supplemental foods life support)

Hopefully plants will accompany humans on their missions to Mars!

Thanks to my colleagues at NASA's Kennedy Space Center

