#### Impacts in the Earth-Moon System What, When and Why?

N. E. B. Zellner Department of Physics







1/4 the size of Earth 1/6 the gravity of Earth

The Moon

Covered in impact craters

No atmosphere

A little bit "wet"





# To the Moon!



12 men between 1969 and 1972 ~2.5 day trip to landing sites on lunar nearside

>800 lbs of samples returned to Earth

Moon is lifeless but holds secrets about Solar System's early years

# What We Learned: Lunar Samples



Apollo 17 lunar rock sample no. 72415,0; 32



Volcanic rock, as seen under a microsco

Astronauts brought back over 800 lbs of volcanic and impact rocks and lunar dirt



Apollo 15 sample 15221,21

#### What We Learned: Moon's Origin

#### Impact by a Mars-sized object (1970s)

Object and outer layer of Earth were flung into geosynchronous orbit, forming a hot disk

- Dense material fell to Earth
- Less dense material formed the Moon

Bulk composition Similar to Earth's mantle: Fe, Co, Ni, P, S



Supported by models of Canup and Asphaug (2000)

# What We Learned: Surface Geology



Highlands: Ca, Al (heavily cratered – when?) Maria: Fe, Ti (lava-filled impact basins: ~3.8 Ga)



Cratered just as heavily as the nearside





# The Impact Flux

Interpreting the time-varying impact flux is one of the top science priorities as determined by the NRC in 2007

- crystalline melt rocks in Apollo samples
- crystalline melt clasts in meteorites
- zircons
- crater counting
- lunar impact glasses



#### Lunar Regolith Samples



Billions of years impacts have pulverized the surface into a fine powder called *regolith* 



Regolith looks and feels like sticky brown talcum powder

# Lunar Glass Samples

Glasses are formed when regolith is melted during a high-temperature event

Where, when, how often impacts, volcanism occurred



Glasses are small, numerous, and homogeneous.



# Selecting/Prepping Samples





#### Composition, Age, and Shape







# X<sub>NBO</sub> and Size

#### Working Hypothesis to determine a<sub>min</sub>:

By knowing  $X_{NBO}$ , the minimum size of glass needed to potentially yield the true  $^{40}$ Ar/ $^{39}$ Ar age of melting can be estimated.

We propose that lunar impact glasses need

$$D = \frac{a^2}{\pi^2 t} \left( 2\pi - \frac{\pi^2}{3} f - 2\pi \sqrt{1 - \frac{\pi}{3}} f \right)$$
McDougall and Harrison, 1995











# New Orbital Data

Lunar Reconnaissance **Orbiter Data** LOLA LROC



**New Interpretations** 

More Data and More Sophisticated Analytical Techniques

# What's New?: LOLA Data



# What's New?: LOLA Data

Crater Size Frequency Distribution, ≥20 km

Higher-res data allow more large craters to be found, which affects crater counts (density)

Show transition from Pop I to Pop II impactors prior to 3.9 Ga (not at 3.9 Ga, Strom et al. 2005)

Result: Serenitatis is much older than Nectaris Fassett et al. (2012) Spudis et al. (2012)

not very high



4 4.2 Age (Ga)

Morbidelli et al. (2012)

# What's New?: New Interpretations



#### What's New?: New Interpretations Sawtooth pattern can explain the non-existence 10-3 0 10-3 of the E-Belt (km) Van (km asteroids, ) 10/02 Np with LHB at ~4.1 Ga (age 10 Cumulative Bombardment of Nectaris), Bombardment on a Terrain Rate vs. Time but vs. Its Age

3.8 4.2 4.4

4 Age (Ga)

#### What's New?: New (but still uncertain) Ages

| Crater                                                                                                               | <u>Age</u>     | Age (as of 2006) |
|----------------------------------------------------------------------------------------------------------------------|----------------|------------------|
| SPA                                                                                                                  | 4.2 Ga (?)     | 4.3ish – 4.05 Ga |
| Serenitatis                                                                                                          | >4.1 – 3.87 Ga | 3.893 ± 0.009 Ga |
| Nectaris                                                                                                             | 4.1 Ga (?)     | 3.92 – 3.90 Ga   |
| Crisium                                                                                                              | ~3.9 Ga (?)    | (?)              |
| Imbrium                                                                                                              | 3.77-3.90 Ga+  | ~3.89 Ga         |
|                                                                                                                      |                | 3.85 ± 0.02Ga    |
| timonum sage is based on Apolio 14 and Apolio 15     samples, whose geologic provenance is not well-     established |                |                  |

# Summary: Lunar Impact Rate

Lunar Samples are being re-analyzed Lunar ages re-calibrated, rocks re-analyzed Few lunar impact glasses with ages ≥ 3.9 Ga Limited by available K? Limited by number of impact events?

Glass spheres turn into shards over time

Duration and nature early lunar impact flux still uncertain

## Other Impacts: Kaguya (2007)

#### Scientific objective:

Obtain information about the lunar surface environment with HDTV images and video



Crash landing on June 11, 2009



Earth-rise Video

A sequence of images shows the bright flash as Kaguya strikes the Moon. (Photo: Jeremy Bailey, Steve Lee, Anglo-Australian Observatory). No water was detected in the immact electa

# Other Impacts: LCROSS (2009)

Lunar Crater Observation and Sensing Satellite (LRO)



Purpose: look for water on the Moon

Centaur impact into shadowed region of crater – LCROSS, other analysis of debris in 6 km dust plumes

LCROSS impact a few km farther away

LCROSS Impact: Cabeus



# Other Detections of H<sub>2</sub>O

Clementine (H<sub>2</sub>O): polar regions

Lunar Prospector (neutrons): 2.6 - 26 billion gal  $M^3$ , Chadrayaan-1(OH or  $H_2O$ ): 32 oz/ton at/near surface

Volcanic samples (Saal *et al.* 2008) showed some trace amounts

Cassini (1999 flyby), Deep Impact (2009 flyby) detected bond between O and H

Apollo samples – not so contaminated after all!



Adsorbed in soil and not as pools of liquid or ice

# Other Missions

Current Missions: GRAIL, 2011 (gravity field, thermal history) LADEE, 2012 (atmosphere, dust environment) Future Mission: ILN, 2013? (geophysical network of 2-4 landed stations)

International Collaboration will be key (\$\$\$\$)





# Back to the Moon!

Lots of interest in the Moon: ESA, China, India, Japan, US (LROLCROSS)

Volatiles? Water? Active interior? Other resources?

Locales for settlement?



#### **Future Settlement?**

Maybe.... farside is good for deep-sky observing (cosmology)

Resources could be extracted (once we have the technology to do so)

Humans can make quick decisions that robots can't



Prefer permanently-*sunlit* areas, which do exist at poles

# **Acknowledgements**

John Delano, Tim Swindle Clark Isachsen, Eric Olsen, Fernando Barra AAS Int'l Research Grant NASA Astrobiology Institute NASA LASER Program NSF Astronomy and Astrophysics Program

